
The Evolution of the DARWIN System

Abstract

DARWIN is a web-based system for presenting the results of wind-tunnel testing and

computational model analyses to aerospace designers. DARWIN captures the data,

maintains the information, and manages derived knowledge (e.g. visualizations, etc.) of

large quantities of aerospace data. In addition, it provides tools and an environment for

distributed collaborative engineering. We are currently constructing the third version of

the DARWIN software system. DARWIN's development history has, in some sense,

tracked the development of web applications. The 1995 DARWIN reflected the latest

web technologies--CGI scripts, Java applets and a three-layer architecturewavailable at

that time. The 1997 version of DARWIN expanded on this base, making extensive use of

a plethora of web technologies, including Java/JavaScript and Dynamic HTML. While

more powerful, this multiplicity has proven to be a maintenance and development

headache. The year 2000 version of DARWIN will provide a more stable and uniform

foundation environment, composed primarily of Java mechanisms. In this paper,, we

discuss this evolution, comparing the strengths and weaknesses of the various

architectural approaches and describing the lessons learned about building complex web

applications.

Keywords: Web applications, WWW applications, WWW database, DARWIN, wind-

tunnel, distributed analysis, visualization, collaborative engineering

Introduction

A maxim of the modern era is that the Internet has transformed distributed applications

from unique singularities to ubiquitous commodities. Indeed, many system-building

components and subsystems exist (e.g., CGI, Perl, Java, database systems, JavaScript,

HTML, DHTML, XML, servlets, CORBA, EJB, and a nearly unbounded number of

commercial implementations of various permutations and combinations of the above).

Building and maintaining applications with these components can be straightforward

enough, if the application is simple enough. However, complex distributed applications

will stress these web development technology components in ways unanticipated by their

creators.

This paper describes the evolution of the DARWIN software system and presents the

lessons learned in that evolution with respect to the software engineering of complex

web-based systems. Aerospace designers and engineers use DARWIN to understand the

results of wind-tunnel testing and numerical model analyses of aircraft designs. Wind

tunnel tests place a physical model of a proposed aircraft in an enclosed space, flow 200-

600 mile-per-hour winds over the surface of that model, and measure performance

attributes such as lift, twist and drag. Over the course of several months, a wind tunnel

experiment may measure close to 50,000 instants, each recording up to a thousand

variables. Numerical model analyses employ techniques like computational fluid



The Evolution of Darwin 09102/99 I

dynamics to evaluate these physical performance properties from virtual designs.

Numerical solutions are computationally resource intensive and can generate results that

are gigabyte sized.

DARWIN not only provides distributed, real-time remote access to large volumes of data

but also tools for data analysis, visualization, and collaboration. DARWIN also deals

with such "'real-world" issues as security requirements and the semantic inconsistency

endemic to extending legacy systems (i.e. naming conventions and variations in

meaning).

We are currently developing the third version of DARWIN. DARWIN's development

history has tracked the development of applications on the web. The original version of

DARWIN, built in 1995, integrated then "cutting-edge" CGI scripts and Java applets with

a Sybase database and Unix file system. Over time, DARWIN evolved to incorporate the

latest advances in browser technology. The current operational system, version 2 of

DARWIN, also makes extensive use of Java/JavaScript and Dynamic HTML to add

features and responsiveness to the user interface. The multiplicity of mechanisms in

DARWIN 2 makes it difficult to maintain, particularly as the components themselves

evolve and are extended as DARWIN 2's users desire increased functionality. The

current web-architecture nicely handles access to the aeronautics data for distributed

users, but in the future, DARWIN must also handle retrieval of the data from distributed
databases.

We are now in the process of designing version 3 of DARWIN. We are guided by the

maxim "less is more." That is, to produce a more effective and maintainable system, we

aredriving to reduce the variety of development mechanisms. DARWIN 3 will be

entirely Java-based: Java client (applet or application) talking to Java servlets

communicating with data sources (databases and applications) via Java/CORBA services.

We believe this will greatly simplify the overall development process.

Background

The DARWIN system allows its users to access aerospace data through a collection of

displays and also to perform various analysis functions. In a typical session, a DARWIN

user might perform tlie following tasks:

• Establish security context

After connecting to the DARWIN web server with a Netscape web browser, the user

logs in with her name and password. Our facility serves a national community of

aerospace designers. Such customers are unenthusiastic about granting competitors

access to data on their proprietary designs. To address these concerns, all

communications with the web server take place over secure http, and the user is

authenticated by IP address in addition to password.

• Browse

The DARWIN home page provides overview screens for the wind tunnel tests and

computational fluid dynamics solutions available (based upon user ID) within the

system. From these screens the user can see what tests are in the system, get basic

information about the tests, and check the test's bulletin boards where messages and

2 I



The Evolution of Darwin 09102.199 [

files are exchanged. Figure 1 shows the DARWIN home page with wind tunnel tests

displayed.

Figure 1: DARWIN Home page with wind tunnel tests displayed.

An in-depth look at the data can be performed by creating a dataset review. The user

selects the data of interest via the browsing screens and launches the review screen.

The review consists of two types of tabular displays (data summary table and

sequence table) and a set of plots. The user can choose which variables are displayed

in the tables and ha the plots. Additional data points can be added to a review by

invoking the query screen and searching for points of interest. Figure 2 shows a three-

dimensional plot of some wind-tunnel data.

Having selected the data to review and configured the tables and plots, the user can

save her work into a DARWIN dataset. This structure retains enough information for

DARWIN to recreate the review screen at a later time. Datasets are managed in a

database on a per user basis.

3 I



The Evolution or' Darwin 0910_99 I

Figure 2: The DARWIN Review Screen showing a three-dimensional plot

Interact with the world

DARWIN is not just a database retrieval and presentation mechanism. It also

provides two kinds of interaction: real-time monitoring of in-progress testing and

collaboration with. colleagues. While a wind tunnel test is in progress, users can

monitor its progress via the live screen. The live screen has the same tables and plots

as the review plus current status indicators, message board, and shared files "shelf."

The tables and plots are updated every 20 seconds to show the latest collected data.

Figure 3 shows the live screen in operation.

4 I



The Ev_)luuon of Darwin 09102./99 I

I_"'_ JIP=====""II _,_,=u_ j

Figure 3: Live Screen

DARWIN also provides several collaboration mechanisms for keeping in touch with

team members. Users can post messages and files associated with a particular test and

can define mail groups for sending group email and tracking the threaded
conversations.

Wind tunnel tests data is grouped into "time instants" or points. At any point, the wind

tunnel data acquisition system has collected a large volume of information about

conditions in the tunrtel and the configuration of the model. For example, pressure taps on

the model can reveal detail about the air pressure at specific spots on the model, and

pressure sensitive paint can produce a continuous pressure map across the model's

surface. These measurement systems produce files containing the results. Pressures

measured at specific locations are stored in text files. Pressure sensitive paint results are

recorded with a camera, so those results are stored in image files. DARWIN deals with a

variety of file types, both ASCII text and binary.

The large volume of data associated with actual tests has led us to a design incorporating
a "meta" database. This database is a relational database that stores information about the

data points. The meta-database holds both data applicable to the experiment as a whole

and variables on which users are likely to want to search. For example, tunnel conditions

such as wind speed, temperature and angle of attack are data applicable to the entire

experiment. Likewise, overall lift and drag apply to the model as a whole. Because users

may want to find, for example, the point with the greatest drag, that information is also

, I



The Evolution of Darwin 09102/99 I

included in the meta-database. The data contained in files produced by specialized
measurement systems are considered detail data. The meta-database stores the locations

of these files, and the points with which they are associated, so that the files can be
retrieved as needed.

Although DARWIN is an aerospace application, it is also a generic application. What

DARWIN does is present to distributed users large volumes of both numeric and image

data gathered from multiple sources and provide visualization tools for examining the

data, collaboration tools for working cooperatively with the data, and real-time

mechanisms for interacting with ongoing activities. The DARWIN architecture and

experience thus generalizes across domains with similar (and simpler) problems.

DARWIN 1

The first version of DARWIN was developed in 1995 in the infancy of web applications.

The architecture combined a classic three-tier approach with a fourth "file system" layer,

as is illustrated in Figure 4.

Client

• HTML HTML Netscape FastTrack
• Dynamic HTML • CGI (Perl)

• JavaScript • HTML
• Java Applets

l_tabme

,J sybperl

L_ Flies

J'_'--_ H'FrP iJ

\ I I
uo, I

Figure 4: The three+ tier architecture of DARWIN 1.

The client user interface was based on the beta release of Netscape Navigator 1.0 and was

limited by that platform's lack of mechanisms for dynamic effects. The screens were pure

HTML. As new features such as frames, JavaScript, and Java applets were added to

Navigator, we rapidly, incorporated them into DARWIN to improve the user interface.

Whenever possible, we moved interfaces updates to the client, thereby reducing

communication and server load, and providing the user with a more dynamic interface.

Thus, instead of producing static images on the server to display plots of the data, a two-

dimensional plotting applet was developed in-house. The applet had the advantage of

being an encapsulated program running on the client, so, for example, it responded to

user imperatives to zoom or remove display points locally. JavaScript functions were

used toward the same end: giving the interface the power to modify itself without having

to request new HTML pages from the web server.

For initial requests and when unavoidable, web pages were constructed by CGI scripts on

the web server. Like many applications at the time (and in the present), the scripts were

written in Perl. A Perl module was employed for communicating with the Sybase

database and the SQL statements for retrieving information from the meta-database were

embedded directly in the scripts. When the user requested information that resided in a

, I



The Evolutiun ofDarwin 09/02/99 [

data tile, the scripts would retrieve the location of the file from the meta-database, fetch

the file from the indicated machine (via http), and build a display to present the file's

contents. The files dealt with at that time were often formats used only at our wind tunnel

facility.

DARWIN 1 was the first system to allow remote access to wind tunnel data. Even with

the initial user interface enhancements afforded by the availability of Java applets and

JavaScript, the client was still very light and fast. The database contained data from only

a few experiments, and its response time was quick. DARWIN 1 provided few browsing

tools, so the amount of system code was small and easy to track and maintain. The

system was deployed and put to use by engineers during wind tunnel experiments. The

users liked and approved of the system, and the project received an award from NASA

for achieving broad industry acceptance of its information system concepts. Once the

engineers got a feel for what could be done with DARWIN, they began to request more

features, notably the ability to compare data across experiments and monitor tests in

progress. They also wanted avenues for collaborating with their peers. Rather than

shoehorn the new features into the original interface design, we did a complete redesign

and developed DARWIN version 2.

DARWIN 2

By late 1997, a whole new generation of tools for enhancing browser applications had

become available. JavaScript had matured into a full-featured language, and dynamic

HTML and stylesheets allowed increased control of the appearance and behavior of web

pages. These new tools were enthusiastically applied in the development of DARWIN 2.

The result was a web application that looked and behaved more like a stand-alone

program than like traditional web pages. Stylesheets allowed consistent control of colors

and fonts and provided exact positioning of graphical elements. DHTML provided more

tools for making the interface dynamic and furthered the goal of minimizing calls to the
web server.

DARWIN 2 presented a comprehensive set of browsing functions and allowed users to

interact with their colleagues and monitor tests in progress. The new monitoring live

screen presented the most recent data in tables and plots that were updated as new data

came in. (Pushing data to a browser is not a web primitive. The updating was

accomplished with an inconspicuous frame at the bottom edge of the screen that loaded

an updater CGI script every 20 seconds. When the script detected new data, it would

reload the appropriate displays.) Live screen also displayed a simple message board

where users could post notes to each other, and a shared "shelf" where files could be

posted and downloaded.

The live screen quickly became popular with our users. Engineers at remote locations

would leave the screen running all day to stay abreast of the test's progress. If they had

questions or comments about what they saw, they could phone the test engineer at the

tunnel. The shared file shelf proved useful for securely transferring files from the tunnel.

Less secure connections to the tunnel systems, such as ftp, could thus be disabled while

still providing the engineers access to the data they required

7 I



The Evolution of Darwin 09102/99 I

In addition, DARWIN 2 introduced the concept of "studies." Users could modify the

standard views into the database and save them along with associated files and hyperlinks

into a user specific virtual tile system. This allowed client location independence for

DARWIN access. It did not matter where, in an approved IF range, the user accessed

DARWIN because all of the personalized studies and associated files were always
available.

Despite the advances in web components, limitations of the browser and the web

architecture required some design compromises:

* Download delays

The user interface for the review screen in DARWIN 2 emulated a set of index tabs

cards for various information displays. The initial implementation loaded all the

displays on every client call. As some of the displays were fairly complex, this proved

too time consuming..We were able to create more responsive screens with DHTML

by putting the displays into "layers" and then hiding or showing the layers

appropriately. However, all the layers still had to be built before the screen could be

used, producing a front-loading delay. The user had to wait, sometimes for a

significant amount of time, for the screen to finish loading, but once done, the user

could switch between displays quickly and easily. In addition, the database was now

populated with several years worth of experimental data, so queries were slower as
well.

• Architectural complexity

DARWIN was now a complex construction of components of various types--mainly

Java applets, JavaScript objects, and CGI scripts--and these components all needed

to communicate with each other. Anytime a query was directed at the database, a CGI

script had to be called to make the database connection, execute the query and return

the results. Communicating those results to the other components without forcing the

whole screen to reload was tricky business as was retrieving client-side state and

saving it to the server.

Using the best web component for each task (e.g., DHTML for graphical precision,

JavaScript for control of DHTML elements, Java for plotting, and CGI scripts for

interacting with the database) simplified creating the system but produced a difficult-

to-maintain monster. Tracking the successive releases of the browser and components

turned into a major task. In the future, once the original developers had moved on, we

anticipate it would be difficult to find maintenance staff with a large variety of skills

to handle all these different packages.

• Client load

Integration of multiple browser components had made the client heavy. In particular,

rendering of DHTML and the large Javascript components stressed the browser and

increased speed and memory requirements on the client machine.

Table 1 illustrates the relative complexity of DARWIN 1 and. DARWIN 2. Version 2

does a lot more, but there is five and a half times as much code in the system, with too

, I



The Evolution of Darwin 09102/99 I

many different kinds of components. The Perl/CGI number for DARWIN 2 includes

14,679 lines of imported packages.

DARWIN 1 DARWIN2

Perl/CGI 8,693 52,406

HTML 2,161 3,436

JavaScript

Java

130 16,398

20,201

C,'C++ 9,201

Gif's, by 25 91
instance

Total lines 18,315 101,642

Table 1: The comparative size of DARWIN 1 and 2

DARWIN 3

Success begets demands for greater functionality. The requirements for DARWIN 3 are

significantly more demanding than the requirements for the previous version of
DARWIN in several areas:

• Remotely located data sources

DARWIN 1 and 2 provided access for geographically distributed users to a centrally

located meta-database and data repository. With DARWIN 3, there will be multiple

distributed meta-databases and data repositories. Dealing with distributed databases

increases system complexity and network latency.

• Distribution of user management tasks

In DARWIN 1 and 2, administrative tasks such as creating new user accounts and

groups and setting access privileges were performed centrally. As tunnels from other

facilities join the DARWIN system, the people in charge of those tunnels should

naturally be in control of who gets access to their data and also be allowed to add

their own people to the system. Administration must become distributed, and the not-

necessarily-identical security policies of these different domains will need to be

supported.

• Full-featured collaboration tools

DARWIN 1 provided one view into the data. Users could customize that view, but

could not save it or create multiple views. With DARWIN 2, users could save their

views, group them into "studies" and associate files, such as spreadsheets or images,

with those studies. In DARWIN 3, the users need to be able to share their work with

colleagues by allowing access to the views they have created while not violating the

access control rules established by the DARWIN administrators.

9 I



The Evolution of Darwin 09102/99 I

ltschner, Pommerell and Rutishauser [ltschner98] report on the GLASS system, which

uses internet technology to monitor remote embedded systems. GLASS proxies

accumulate data from embedded system monitoring devices and store this information on

the database of a server. Client applications, running in browsers with Java applets,

retrieve this data through CGI scripts on the server.

Tesoriero and Zelkowitz [Tesoriero98] have developed the WebME system, which uses a

mediating query processor, metadata database, and wrappers on the information

repositories to direct queries to the appropriate databases

Discussion

The common technology of the Internet and world-wide-web markup languages, internet

protocols, servers, Java, CORBA, and so forth have taken the task of building complex

distributed applications from expeditions to outings. With DARWIN, in a few short years

we have transformed access to data from wind tunnel experiments from a slow and

cumbersome process to an immediate, real-time, interactive, collaborative experience.

This has been accomplished by relying on a large variety of Internet technologies. Like

kids in the candy store, we have applied each tool for its particular strength. Moving

forward in this process, we see that a long-term maintainable system requires fewer

mechanisms. Although individually, technologies such as DHTML, browsers, and CGI

scripts simplify specific tasks, integration and evolution requirements argue less is more,

and that being closer to the programming language level (Java), particularly with a

network-aware language like Java, will make for a sustainable environment.

References

Evans, E. and Rogers, D. Using Java Applets and CORBA for Multi-User Distributed

Applications. IEEE Internet Computing 1, 3 (May 1997) 4355.

Filman, R. E., Barrett, S., Lee, D. D., and Linden, T. Inserting Ilities by Controlling

Communications. to appear in Comm. ACM.

Itschner, R., Pommerell, C., and Rutishauser, M. GLASS: Remote Monitoring of

Embedded Systems in Power Engineering. IEEE Internet Computing 2, 3 (May 1998)
4652.

Koga, D. J., Schreiner, J. A., Buning, P. G., Gilbaugh, B. L. and George, M. W.

Integration of Numerical and Experimental Wind Tunnels (IofNEWT) and Remote

Access Wind Tunnel (RAWT) Programs at NASA. 19 'h AIAA Advanced Measurement

and Ground Testing Technology Conference, New Orleans, LA (June 1996).

Ly, E. Distributed Java Applets for Project Management on the Web. IEEE Internet

Computing 1, 3 (May 1997) 2127.

Tesoriero, R., and Zelkowitz, M. A Web-based Tool for Data Analysis and Presentation..

IEEE Internet Computing 2, 5 (September 1998) 6369.

t2 I


